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Abstract
Effective interactions in soft-matter physics result from a formal contraction of
an initial multicomponent system, composed of mesoscopic and small particles,
into an effective one-component description. By tracing out in the partition
function the degrees of freedom of the small particles, a one-component system
of mesoscopic particles interacting with a state-dependent Hamiltonian is found.
Although the effective Hamiltonian is not in general pairwise additive, it is
usually approximated by a volume term and a pair-potential contribution. In
this paper the relation between the structure, for which the volume term plays
no role, and the thermodynamics of a fluid of particles interacting with a
density-dependent pair potential is analysed. It is shown that the compressibility
equation differs from that of atomic fluids. An important consequence is that
the infinite-compressibility line derived from the thermodynamics does not
coincide with the spinodal line stemming from the divergence of correlations.

1. Introduction

The term soft-matter (complex) fluids refers to multicomponent fluids composed of mesoscopic
(colloidal) particles dispersed into a solvent of microscopic (atomic) particles which may
contain other small constituents such as ions of a dissociated salt or short polymeric chains [1].
Since the size of the colloidal particles exceeds that of the remaining constituents by three or
four orders of magnitude, it is natural to contract the initial multicomponent system into a one-
component description involving only the mesoscopic particles. This can be formally done [2]
by integrating in the partition function the coordinates and momenta of the small particles,
leading to an ‘effective’ Hamiltonian for the mesoscopic particles which, together with the
direct interactions, contains a free-energy term. This term can be formally expanded [3] as
the sum of a ‘volume’ contribution (which does not contain the coordinates of the mesoscopic
particles) and n-particle state-dependent interactions (n = 2, 3, . . .). In order to take advantage
of the well-known methods developed for simple atomic fluids, this expansion is usually
truncated at second order yielding the ‘pair-potential approximation’.
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In this paper we analyse the relation between the structure, for which the volume term
plays no role, and the thermodynamics of a fluid of colloidal particles interacting with a density-
dependent pair potential. In the next section we first review some well-known concepts for
atomic fluids.

2. Pair correlation and direct correlation routes

The free energy F0 of a simple atomic fluid of particles interacting with a central pair potential
V0(|r − r′|) can be split into the ideal part, F id

0 , and the excess contribution, Fex
0 .

When Fex
0 is viewed as a functional of the interaction potential, Fex

0 = Fex
0 [V0], the

two-particle density is defined as the first functional derivative [4]:

ρ0(r, r′) = 2
δFex

0 [V0]

δV0(|r − r′|) . (1)

Integrating equation (1) following a linear path of potentials λV0(r) between the ideal gas
(λ = 0) and the actual fluid (λ = 1) yields for a uniform phase (ρ0(r, r′) = ρ2g0(|r − r′|; ρ),
where ρ is the average number density and g0(r; ρ) is the pair correlation function (pcf)),

f ex
0 (ρ) = 1

2ρ

∫ 1

0
dλ

∫
dr V0(r)g0(r; ρ|λ), (2)

where f ex
0 (ρ) is the excess free energy per particle and g0(r; ρ|λ) denotes the pcf for the fluid

with potential λV0(r). Note that equation (2) involves a charging process of interactions.
When a single-particle external field potential φ(r) is added to the Hamiltonian, Fex

0 is a
unique functional of the local density ρ(r), Fex

0 = Fex
0 [ρ], for a given interaction potential.

The Ornstein–Zernike direct correlation function (dcf) is defined as the second functional
derivative [4]:

c0(r, r′) = − δ2β Fex
0 [ρ]

δρ(r) δρ(r′)
, (3)

where β = 1/kB T , with kB Boltzmann’s constant and T the temperature. Integrating
equation (3) twice following a linear path in the space of density functions ξρ(r) (0 � ξ � 1)
yields for a uniform phase (φ(r) = 0, ρ(r) = ρ, c0(r, r′) = c0(|r − r′|; ρ), where the dcf
becomes an ordinary function of the average number density),

β f ex
0 (ρ) = ρ

∫ 1

0
dξ (ξ − 1)

∫
dr c0(r; ξρ), (4)

where c0(r; ξρ) is the dcf for the fluid with average number density ξρ. Note that equation (4)
involves a charging process of the density between the ideal gas (ξ = 0) and the actual fluid
(ξ = 1). Note also that the cornerstone of the theory of simple fluids is that equations (2)
and (4) are equivalent, i.e. they generate the same thermodynamics.

The dcf c0(r; ρ) and the total correlation function (tcf) h0(r; ρ) = g0(r; ρ) − 1 satisfy
the Ornstein–Zernike equation [4], which for a fluid phase in Fourier space reads

1 − ρc̃0(k; ρ) = [1 + ρh̃0(k; ρ)]−1, (5)

where the tilde denotes a Fourier transform.
From the thermodynamic relation

p0(ρ) = ρ2 ∂ f0(ρ)

∂ρ
, (6)
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where p0(ρ) is the pressure, f0(ρ) = kB T [ln(ρ�3) − 1] + f ex
0 (ρ), and � is the thermal

de Broglie wavelength, from equations (4) and (5) the compressibility equation follows:

β
∂p0(ρ)

∂ρ
= 1 − ρc̃0(0; ρ) = [1 + ρh̃0(0; ρ)]−1. (7)

It is seen from equation (7) that the line of diverging correlations h̃0(0; ρ) = ∞ (ρc̃0(0; ρ) = 1)
coincides with the infinite-compressibility line ∂p0(ρ)/∂ρ = 0.

3. Soft-matter fluids

We now consider a fluid of mesoscopic particles interacting with a density-dependent pair
potential V (r; ρ). Since ρ appears in the Hamiltonian as a parameter, the procedure of section 2
which consists in charging the interactions from the ideal gas to the actual fluid can be easily
transposed. Indeed, when the excess free energy of the colloidal fluid Fex is viewed as a
functional of the interaction potential, Fex = Fex[V (ρ)], the two-particle density is

ρ(r, r′) = 2
δFex[V (ρ)]

δV (|r − r′|; ρ)
, (8)

and following the same steps as in the previous section, the excess free energy per particle
f ex(ρ) for a uniform phase reads

f ex(ρ) = 1
2ρ

∫ 1

0
dλ

∫
dr V (r; ρ)ḡ(r; ρ|λ), (9)

where ḡ(r; ρ|λ) is the pcf for the fluid with potential λV (r; ρ).
At this point, we consider a simple example which shows that the compressibility equation

for density-dependent pair potentials differs from equation (7). Let us assume that V (r; ρ)

can be expanded as a series in the density:

V (r; ρ) = V0(r) + ρV1(r) + O(ρ2). (10)

Integrating now equation (8) following the linear path of potentials V (r; ρ|λ) ≡ V0(r) +
λ[V (r; ρ) − V0(r)], the free energy per particle f (ρ) can be written as

f (ρ) = f0(ρ) + 1
2ρ

∫ 1

0
dλ

∫
dr [V (r; ρ) − V0(r)]g(r; ρ|λ), (11)

where g(r; ρ|λ) denotes the pcf for the fluid with potential V (r; ρ|λ). Note that f (ρ) and
f0(ρ) only differ in the density derivatives of V (r; ρ). A simple approximation for f (ρ) can
be obtained by truncating at second order in the density the last term in the rhs of equation (11),
with g(r; ρ|λ) � exp[−βV0(r)], giving

f (ρ) = f0(ρ) − ρ2a, (12)

where

a = − 1
2

∫
dr V1(r) exp[−βV0(r)]. (13)

Note that equation (12) resembles the van der Waals equation for atomic fluids, leading to

∂p(ρ)

∂ρ
= ∂p0(ρ)

∂ρ
− 6ρ2a, (14)

where p(ρ) is the (osmotic) pressure of the colloidal fluid.
With this simplification in mind, let us assume that both V (r; ρ) and V0(r) are repulsive

pair potentials. Since for the density-independent pair potential V0(r) the pressure is an
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increasing function of the density (∂p0(ρ)/∂ρ > 0), equation (14) shows that, whenever
a > 0, thermodynamic states can be found for which ∂p(ρ)/∂ρ � 0. In other words, the
density dependence of the potential may produce van der Waals loops in the pressure yielding
a vapour–liquid transition. This is the case for the Debye–Hückel potential:

V (r; ρ) = Z 2e2

ε

exp[−κ(ρ)r ]

r
, (15)

describing the effective pair-potential interaction between two point colloidal particles with
total charge −Ze. In equation (15), ε is the dielectric constant of the solvent and κ(ρ) denotes
the Debye screening parameter:

κ2(ρ) = 4πe2

εkB T
(Zρ + 2ρs), (16)

where ρs is the density of the ions of an added monovalent salt. It is seen from equations (15)
and (16) that

ρV1(r) = − Z 2e2

2ε

(
Zρ

2ρs

)
κ(0) exp[−κ(0)r ] < 0, (17)

and, hence, a > 0. Computer simulations [5] show that in the high-salt limit (2ρs �
Zρ) the phase diagram contains only a fluid phase; that is, according to equation (17),
the amplitude of ρV1(r) is so weak that the ‘attractive’ contribution in equation (14) is
negligible, i.e., ∂p(ρ)/∂ρ � ∂p0(ρ)/∂ρ > 0. On the other hand, in the low-salt limit
(2ρs � Zρ) the phase diagram obtained by Monte Carlo simulations [6] contains a vapour–
liquid transition; that is, the ‘attractive’ contribution in equation (14) drives the fluid towards
a phase separation and the compressibility diverges for certain thermodynamic states, i.e.,
∂p(ρ)/∂ρ = 0. But since the lack of attractions precludes the divergence of correlations, the
equivalent to the compressibility equation (7) no longer holds. This result agrees with recent
numerical simulations [7] and could explain the thermodynamic inconsistencies found in [8]1.

4. Compressibility equation

As stated in equation (4), the basis of the compressibility equation for density-independent
interactions consists in a charging process of the density. For density-dependent pair potentials
a charge of density simultaneously induces a charge of interactions and when the excess free
energy per particle is determined from the direct correlation route, pair correlation terms also
contribute to2 f ex(ρ). This can be formally shown by introducing equation (4) into (11) and
using the identity

c̃0(0; ξρ) = c̃(0; ξρ) −
∫ 1

0
dλ c̃′(0; ξρ|λ), (18)

1 During the conference to which this Special Issue is devoted, a different opinion was expressed by Louis. According
to this author an effective density-dependent pair potential cannot be properly interpreted without reference to the
coarse-graining procedure by which it was derived. This is illustrated in [8] with a number of explicit examples.
Note, however, that some of the inconsistencies discussed by this author in [8] result from the use of the standard
compressibility equation whereas, as shown here, thermodynamically consistent results can be obtained within the
pair-potential approximation only when the compressibility equation is modified as indicated below. To further
illustrate this point it may also be observed here that the results of the simulations of an effective pair potential by
Dijkstra and van Roij [6] are not compatible with the standard compressibility equation.
2 Note that for density-independent potentials the fluid can be charged with interactions at constant density and vice
versa. For density-dependent potentials the fluid can be charged with interactions at constant density but cannot be
charged with density with constant interactions.



The compressibility equation for soft-matter liquids S399

where c̃(0; ξρ|λ) is the zero-wavevector Fourier transform of the dcf for the fluid with potential
V (r; ξρ|λ) (the prime denoting the derivative with respect to λ) [9], giving

β f ex(ρ) = ρ

∫ 1

0
dξ (ξ − 1)

∫
dr c(r; ξρ) + b(ρ), (19)

with

b(ρ) = −ρ

∫ 1

0
dξ (ξ − 1)

∫ 1

0
dλ [1 + ξρh̃(0; ξρ|λ)]−2h̃′(0; ξρ|λ)

+ 1
2ρβ

∫ 1

0
dλ

∫
dr [V (r; ρ) − V0(r)]g(r; ρ|λ), (20)

where h̃(0; ξρ|λ) is the tcf related to c̃(0; ξρ|λ) through the Ornstein–Zernike equation. The
compressibility equation then reads

β
∂p(ρ)

∂ρ
= 1 − ρc̃(0; ρ) + ρ

[
2

∂

∂ρ
+ ρ

∂2

∂ρ2

]
b(ρ), (21)

showing that the infinite-compressibility line ∂p(ρ)/∂ρ = 0 does not coincide with the line
of diverging correlations ρc̃(0; ρ) = 1. Since equation (19) is an exact transformation of
equations (11) or (9), it is seen that the pair correlation and the direct correlation routes are
equivalent for density-dependent pair potentials3. Note that if b(ρ) were omitted in (19), the
two routes would not generate the same thermodynamics.

A different interpretation of the compressibility equation for density-dependent pair
potentials has also been recently considered [10]. We first note that when V0(r) is replaced by
a density-dependent pair potential V (r; ρ), all the thermodynamical and structural quantities
acquire a supplementary ρ-dependence induced by the effective potential. Let us call
the ρ-dependence of section 2 ‘explicit’ and call the ρ-dependence induced via V (r; ρ)

‘implicit’. In order to distinguish between these ρ-dependences, we denote the pcf of the
colloidal fluid by g(r; ρ; [V (ρ)]), where the first argument refers to the explicit ρ-dependence
whereas the implicit ρ-dependence has been indicated through the functional dependence
[V (ρ)]. Let c(r; ρ; [V (ρ)]) denote the dcf related through the Ornstein–Zernike equation to
g(r; ρ; [V (ρ)]). As noted in section 2, equations (2) and (4) are equivalent, i.e. when we
perform the virial expansion of the excess free energy using the pair correlation and the direct
correlation routes, we obtain the same virial coefficients in terms of Mayer functions involving
the density-independent potential V0(r). In this case the charging process of the density
in equation (4) operates on the explicit dependence (the unique ρ-dependence for density-
independent potentials). If we assume that for density-dependent potentials the charging
process of the density only operates on the explicit dependence, we obtain for both routes, by
hypothesis, the same virial coefficients in terms of Mayer functions involving now the density-
dependent potential V (r; ρ), i.e. the same thermodynamics. Thus, if we want to maintain the
equivalence of the two procedures, we propose to generalize the direct correlation route as

β f ex(ρ) = ρ

∫ 1

0
dξ (ξ − 1)

∫
dr c(r; ξρ; [V (ρ)]); (22)

3 The basic difference between equations (4) and (19) is that for density-dependent pair potentials there is an additional
term b(ρ).
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in other words, the ρ appearing in V (r; ρ) is treated as an external parameter4. From
equation (22) we recover the compressibility equation (21), which reads in this formulation

β
∂p(ρ)

∂ρ
= 1 − ρc̃(0; ρ; [V (ρ)]) − 2ρ

∫ ρ

0
dρ ′ ∂ c̃(0; ρ ′, [V (ρ)])

∂ρ

− ρ

∫ ρ

0
dρ ′

∫ ρ′

0
dρ ′′ ∂2c̃(0; ρ ′′, [V (ρ)])

∂ρ2
. (23)

In summary, we have shown that the pair correlation and the direct correlation routes are
equivalent for density-dependent pair potentials when the parameter ρ appearing in V (r; ρ)

is interpreted either as an ‘active’ or as a ‘passive’ variable [11] in the charging process of the
density. The resulting compressibility equation indicates that the thermodynamic states for
which the compressibility diverges are different from the thermodynamic states for which the
tcf is long ranged.
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